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Abstract. This work introduces the S2M (SAFRAN - SURFEX/ISBA-Crocus - MEPRA) meteorological and snow cover

reanalysis in the French Alps, Pyrenees and Corsica, spanning the time period from 1958 to 2020. The simulations are made

over elementary areas, referred to as massifs, designed to represent the main drivers of the spatial variability observed in

mountain ranges (elevation, slope and aspect). The meteorological reanalysis is performed by the SAFRAN system, which

combines information from numerical weather prediction models (ERA-40 reanalysis from 1958 to 2002, ARPEGE from5

2002 to 2020) and the best possible set of available in-situ meteorological observations. SAFRAN outputs are used to drive

the Crocus detailed snow cover model, which is part of the land surface scheme SURFEX/ISBA. This model chain provides

simulations of the evolution of the snow cover, underlying ground, and the associated avalanche hazard using the MEPRA

model. This contribution describes and discusses the main climatological characteristics (climatology, variability and trends),

and the main limitations of this dataset. We provide a short overview of the scientific applications using this reanalysis in10

various scientific fields related to meteorological conditions and the snow cover in mountain areas. An evaluation of the skill

of S2M is also displayed, in particular through comparison to 665 independent in-situ snow depth observations. Further, we

describe the technical handling of this open access data set, available at this address: http://dx.doi.org/10.25326/37#v2020.2.

Scientific publications using this dataset must mention in the acknowledgments: "The S2M data are provided by Météo-France

- CNRS, CNRM Centre d’Etudes de la Neige, through AERIS" and refer to it as Vernay et al. (2020).15

1 Introduction

The assessment of fluctuations and long term changes in meteorological and snow cover conditions in mountain regions is

critical for many scientific studies and related operational applications (Hock et al., in press). However, the very complex

topography of mountains makes the meteorological monitoring of these areas very challenging (Beniston et al., 2018). Numer-

ical modelling based on physical processes allows to extend the information provided by this limited number of observation20

stations to wider mountain areas, over longer and uninterrupted time periods, and also to atmospheric and snow cover vari-
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ables, which cannot be directly observed. Robust assessments of mountain climate evolution is increasingly relying on specific

retrospective meteorological analyses (reanalyses) combining a numerical simulation of relevant variables and processes, and

past observations. The spatial resolution of existing global reanalyses such as the ECMWF ERA-Interim (79 km, Dee et al.,

2011) or its successor ERA-5 (31 km, Hersbach et al., 2019), the NASA MERRA-2 (~50 km, Gelaro et al., 2017) or the Japan25

Meteorological Agency JRA-55 (~55 km, Kobayashi et al., 2015) is generally too coarse for direct use in mountain regions. For

example, Daloz et al. (2020) compared snowfall estimates of these reanalyses over worldwide mountainous areas and showed

their limits to capture local orographic enhancements. Such large scale reanalyses usually do not account for precipitation

observations, which is solely output from the model forecasts benefiting from the analysis of other key atmospheric variables

(temperature, wind speed etc.). Regional to local reanalyses benefit from a higher spatial resolution, but they often lack key30

outputs for addressing mountainous regions. For example in France, Gottardi et al. (2012) and Soci et al. (2016) limited their

analysis to daily precipitation fields and Caillouet et al. (2019) only considered temperature and evapo-transpiration in addition

to daily precipitation.

Reanalyses dedicated to mountain areas have been developed using different methodologies. Margulis et al. (2016) applied

a particle batch smoother (Margulis et al., 2015) to produce a reanalysis of snow water equivalent in the Sierra Nevada (USA)35

over a 30 year period. Bucchignani et al. (2013) used a non-hydrostatic regional climate model at a spatial resolution of 14 km to

produce a reanalysis of the meteorological conditions in the Alpine region over the 20th century. Fiddes et al. (2019) developed

an ensemble approach to quantify the uncertainties of the combination of a meteorological model and a land surface model,

with a clustering of the simulation points to reduce the computation cost and apply the method at different scales. Olefs et al.

(2020) applied the SNOWGRID snow cover model to a climate configuration in order to assess changes in meteorological and40

snow cover conditions in Austria from 1961 to 2020. However, none of these reanalyses used a multi-layer sophisticated snow

cover model model able to describe in details the internal properties of snow on the ground.

Since the 1980s, Météo-France has developed a numerical model chain covering the main French mountain ranges designed

for operational monitoring and forecasting of snow conditions and avalanche hazard. Initially referred to as SAFRAN-Crocus-

MEPRA (SCM, Durand et al., 1999), this model chain simulates both meteorological and snow cover variables, as well as vari-45

ous avalanche hazard diagnostics at various elevations, slopes and aspects for the three main French high elevation mountainous

regions (French Alps, Pyrenees and Corsica, see Figure 2). The SAFRAN analysis system (Durand et al., 1993) combines me-

teorological observations and output from a Numerical Weather Prediction (NWP) model to drive the Crocus snowpack model

(Brun et al., 1989, 1992; Vionnet et al., 2012) with the relevant meteorological variables. Although the initial goal of the system

is to provide real-time estimates of snow conditions (Morin et al., 2020), it is also possible to use past data as input to use the50

SCM chain as a reanalysis tool (Durand et al., 2009a, b) for combined meteorological and snow cover conditions in the Alps.

This reanalysis has been used to assess the quality of the real-time model chain. Indeed, it provides the simulated variables over

a period that is long enough to perform a robust statistic evaluation by comparison with an independent set of observations of

those same variables. It is also a unique source of information concerning past snowpack stability and avalanche hazard, and

has been used in a large number of scientific applications in the mountain environment. This simulation system was later ex-55

panded to covering all of mainland France and Corsica for hydrological monitoring and forecasting purpose (SAFRAN-France
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- ISBA - MODCOU, SIM) (Vidal et al., 2010; Le Moigne et al., 2020), and provided inspiration for a European-scale analysis

system (Soci et al., 2016; Morin et al., 2021). However, in this article we only focus on the "original" model chain addressing

mountain regions of France.

This paper introduces the latest version of the SCM reanalysis, now referred to as SAFRAN - SURFEX/ISBA-Crocus -60

MEPRA (S2M). This new version differs from the previous one (Durand et al., 2009a, b) by its temporal extent (14 more

years, now spanning 1958-2020), its extension to Corsica and the Pyrenees in addition to the French Alps, and an update of

the observations and models involved. For example, Crocus is now fully embedded as a snow cover model of the ISBA land

surface model within the SURFEX interface (Lafaysse et al., 2013; Masson et al., 2013). However, the major innovation is

that this new dataset is now freely available (see section 3 for the dataset description and section 7 for access informations) for65

scientific applications using the AERIS portal (http://dx.doi.org/10.25326/37#v2020.2). The first part of this paper describes

the input data and model chain used to produce this reanalysis as well as the simulated variables and details on the practical

access to the reanalysis dataset. The last section gives an overview of the possible uses of this dataset, with an emphasis on

its three main dimensions (spatial, temporal and altitudinal). It also presents an objective assessment of the limitations of this

dataset in terms of climate trends, which have never been published until now in spite of its large use in the French scientific70

community for climate applications. Last, an evaluation of the reanalysis performance is given in terms of total snow depth by

comparison to independent observations.

2 Design and main features of the S2M model chain

The S2M reanalysis is the combination of :75

– the SAFRAN meteorological analysis, which combines output from a Numerical Weather Prediction model and in situ

observations,

– the SURFEX/ISBA-Crocus snow cover model (including MEPRA), which is driven by atmospheric fields from the

SAFRAN reanalysis.

2.1 Geometry of the S2M reanalysis80

The S2M reanalysis results from simulations performed over elementary areas specifically designed to represent the main

drivers of the spatial variability in mountain ranges called "massifs" (shapefiles of the different massifs are included in the

dataset and a glimpse of the geographic division of the three areas can be seen on Figure 2). A massif is a conceptual object

corresponding to a mountainous area (of about 1000 km2 on average) over which the meteorological conditions are consid-

ered homogeneous at a given elevation. This hypothesis simplifies the representation of a complex topography by covering85

the different elevations and aspects of a given massif with a minimum number of representative computation points. The S2M

reanalysis uses a 300 m vertical resolution. The upper (resp. lower) elevation for each massif is defined as the 300 m multiple
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Figure 1. Description of the three steps of the reanalysis model chain : 1) NWP model (ERA-40 before 2002, ARPEGE from 2002 onwards)

2) Assimilation and geometry adjustment by SAFRAN 3) Snow cover model SURFEX/ISBA-Crocus, including MEPRA.

immediately above the highest point (resp. below the lowest point) of a 50 m digital elevation model from the French National

Geographic Institute (IGN) in the considered massif. For each elevation, two different simulations are provided: one simulation

only contains flat terrain, and for the other one 8 aspects (N, NE, E, SE, S, SW, W and NW) with two different slope angles90

(20◦ and 40◦) for each aspect.

In addition to simulations provided on the massif geometry, simulations are also performed over a set of 665 observation

stations. These sites have been selected to be higher than 600 m a.s.l and to provide snow depth measurements. The selected

sites cover the three domains of the reanalysis with 435 observations sites in the Alps, 208 in the Pyrenees and 22 in Corsica.95

Each site is characterized by its altitude, slope and aspect. A shapefile file containing all the stations informations is provided

with the dataset. These simulations result from an interpolation between the nearest elevation bands of the corresponding mas-

sif and a projection of the direct solar radiation according to the slope and aspect of the station, the time during the day and

4
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Figure 2. Map of the three areas covered by the S2M reanalysis. The rectangles indicate for each area the domain of extraction of the

observations and guess from the NWP output. The numbers within the massifs is the one used to identify the massifs in the dataset. The color

of the massifs indicates the French administrative department(s) in which the largest part of the massif stands.

the information about solar masks from surrounding topography. The main purpose of these local simulations is to compare

snow depth simulations to observations in order to assess the performance of the model (see section 4.3) with as few artifacts as100

possible due to topographical discrepancies between observations and the simulation configuration. However, it must be kept in

mind that the spatial scale of SAFRAN analyses (e.g. precipitation) remains at the massif scale even in this local configuration.

2.2 Input data

The S2M reanalysis is only fed by input data to the SAFRAN atmospheric analysis system as described in section 2.4.105

2.2.1 Meteorological guess used by SAFRAN

The S2M reanalysis uses two different NWP model output as a guess for the SAFRAN analysis :

– The ERA-40 reanalysis (Uppala et al., 2005) between 1958 and 2002, which is based on a uniform data assimilation

system (but variable in-situ and satellite network density) over the whole period.

– Operational forecasts of the French global NWP model ARPEGE from 2002 to 2020, which evolved over this time110

period with on average one major evolution per year.

5
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The use of the ERA-40 reanalysis instead of the most recent ERA-interim or ERA-5 is inherited from previous work (Du-

rand et al., 2009a, b). It is planned to use ERA-5 for future updates of this reanalysis. Outputs from the above-mentioned NWP

systems are used as a preliminary guess at a 6-hour time resolution of the main variables driving the evolution of the snow

cover (see Table 1). This guess contains informations both at the surface and at different heights above the surface.115

The guess for precipitation since 1958 to 1 August 2017 is obtained using the AURELHY analysis method (Bénichou and Le

Breton, 1987) providing a 24-hour climatological accumulation for each massif, depending on the weather type (without any

use of the precipitation fields from the NWP model). Since 1 August 2017, 24-hour cumulated ARPEGE precipitation fields

are used as precipitation guess and the chronology of precipitation is taken from 6-hour ARPEGE precipitations. This change120

is due to the improvements in simulated precipitation and their availability at a 6-hour time resolution, which increases the

consistency of the analysis and meaningfulness of the computation of the phase of precipitation. However, it is not possible to

extend this approach back in time, using the current NWP model output, since 6-hour resolution precipitation data in ARPEGE

is only available since 2017.

Variables levels

300 hPa (ERA-40 only)

Geopotential (m) 500 hPa

Temperature (K) 700 hPa

Meridian wind (m s−1) 850 hPa

Zonal wind (m s−1) 900 hPa

Relative humidity (%) 950 hPa

1000 hPa

Pressure (hPa)

Geopotential (m)

Temperature (K)

Meridian wind (m s−1) Surface

Zonal Wind (m s−1)

Relative humidity (%)

10 m

Pressure (hPa) 20 m

Temperature (K) 50 m

Meridian wind (m s−1) 100 m

Zonal Wind (m s−1) 250 m

Relative humidity (%) 1000 m

1500 m

125
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Figure 3. Temporal evolution of the daily mean number of surface temperature and 24-hour precipitation observations available within the

massifs limits (dashes) and effectively assimilated (solid lines) for each mountainous area over the period covered by the reanalysis.

Table 1. List of variables and levels used as meteorological guess. All levels are not always available depending on the period and the grid

point.

2.2.2 Surface observations

The most influential observations analysed by SAFRAN are surface observations from various networks. This includes man-

ual observations from the Météo-France climatological network and the dedicated snow observation network ("réseau nivo-130

météorologique" in French) resulting from a collaboration between Météo-France and mountain stakeholders (in particular

Domaines Skiables de France, Association Nationale des Maires de Stations de Montagne, Association Nationale des Di-

recteurs de Pistes et de la Sécurité de Stations de Sports d’Hiver). The latter network has been progressively implemented since

the 1970s, with observations relevant to the mountain snow cover. These observations are a key part of the analysis system

since they often are the only available information for a given area. They include a large range of meteorological and snow135

cover variables including past weather conditions, information on the rain-snow elevation or 24h height of new snow one or

two times per day, which are used to ensure a consistent analysis and check automatic observations. Observations for Andorra

and the Spanish side of the Pyrenees are provided by means of international collaborations for the exchange of snow and

meteorological observations (NIVOMET). Automatic observations result from various relevant automated networks, including

the dedicated high elevation Nivose network. All surface observations are characterized according to their representativeness140

of the surrounding massifs in order to include them in the analysis of different massifs if not enough observations are available

within a given massif.

The temporal evolution of the number of daily surface temperature and 24-hour precipitation observations available and

effectively used in the assimilation process is shown in Figure 3. Available observations (dashes) only refer to stations within
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Figure 4. Mean daily number of temperature and 24-hour precipitation observation sites available (plain colours) and used (hatches) to

produce the S2M reanalysis in every 300 m elevation band for the French Alps, Pyrenees and Corsica on average for the 1958-2020 period.

the boundaries of the massifs while the analysis model can use observations coming from more distant low elevation areas145

(see Figure 2 for the extraction domains of observations). This difference explains that the daily average number of assimilated

observations can be higher than the number of available observations within the simulation domain. Figure 3 shows a generally

growing number of available observations in the mountains over most of the period 1958-2020 in the three areas. This explains

the increasing number of assimilated observations and suggests that the share of mountain observations in the reanalysis also

rose. The stabilisation (for temperature) or decrease (for precipitation) of the number of observations for the five last years of150

the period is due to a cost reduction in some manual measurements and automatic networks. The rapid increase of temperature

observations (Figure 3) starting from the beginning of the 1990s can be explained by the development of automatic networks

providing hourly observations in mountain areas, thus adding many more observations than daily precipitation observations. It

is an important source of temporal heterogeneity in the dataset (see section 5.2). These figures also show that the three areas

have different observation network densities, in particular there are significantly more observations in the French Alps than in155

the Pyrenees although these two areas have a similar number of massifs.

Figure 4 shows the mean daily number of observations over the 1958-2020 period for the same variables by elevation bands

up to 3300 m a.s.l. for the three domains. It highlights the important share of low elevation observations (up to 600 m a.s.l)

in the SAFRAN analysis even though these are not necessarily the most representative of high elevation climate. It especially

shows that there are very few available observations above 3000 m a.s.l. (and even above 2100 m a.s.l for precipitations because160

the Nivose network does not include precipitation measurements). This implies that most of the specific information relevant

to the mountain environment is located within the middle elevation ranges (from 600 m to 2100 m a.s.l.). These elevations

typically match ski resort elevations where manual observations are performed in wintertime and most automatic stations are

established. The observation network at these elevations in the French Alps is dense enough for the assimilation algorithm

8
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to reject some apparently spurious observations whereas at higher elevations and in the two other domains most available165

observations are usually used in the analysis system.

For this new version of the S2M reanalysis, a more complete set of observations than the previous one (Durand et al., 2009a)

was used, using all observations available in the Météo-France database.

2.3 Other observations

SAFRAN also uses two additional sources of information:170

– Radiosondes provide vertical profiles used to correct the upper part of the profiles coming from the guess. However very

few radiosondes observations are available daily and they are often launched from distant areas.

– Satellite observations are used since 1991 to analyse the cloudiness based on 1 km observed cloud structures which can

especially help detect total cloudiness and clouds in valleys.

2.4 Short description of SAFRAN175

SAFRAN (Durand et al., 1993) is an atmospheric analysis system, which provides the main meteorological variables necessary

to drive a land surface model (and in particular a snow cover model) at an hourly time step. Each SAFRAN analysis covers a 24-

hour period from 6:00 on day D-1 to 6:00 on day D. It combines the gridded meteorological guess from ERA40 or ARPEGE

NWP models (see section 2.2.1) providing vertical profiles of air temperature, humidity, wind speed and direction every 6

hours. An estimation of the 24-hour cumulative precipitation over the analysis period is obtained either from a climatology or180

directly from the NWP simulated precipitation (see section 2.2.1).

The first step of the SAFRAN analysis of all variables except precipitation is to compute a meteorological guess on its

massif geometry (see section 2.1) every 6 hours using the vertical profiles from the NWP model. That guess is corrected by

the assimilation of a first set of surface observations (of temperature, humidity and wind) available every 6 hours using an

optimal interpolation. The weight of each assimilated observation is based on the horizontal distance between the observation185

and analysis points. These 6-hour values are then interpolated at an hourly time step. The daily evolution of temperature is

particularly important and the implemented scheme is based on Martin and Mainguy (1988). A first estimate of the maximum

daily temperature is performed using the analysis at 12:00. Then the temperature profiles are temporally interpolated using a

diurnal adjustment depending on the other meteorological variables. If hourly observations are available, a variational assimi-

lation of these observations produces the final hourly simulation for the main relevant atmospheric variables affecting surface190

processes (i.e., air temperature, wind speed, air humidity, cloudiness, long-wave incoming radiation, and direct and scattered

solar radiation).

The precipitation analysis consists in an optimal interpolation between the guess and the different available observations of

24 h cumulative precipitation within the massif followed by a temporal distribution of hourly precipitations according to the195

NWP-model chronology when available (see section 2.2.1) or simulated hourly relative humidity. The phase of hourly precip-

9
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itation is determined depending on the simulated 0◦C isotherm elevation for each aspect and potential past weather condition

observations as well as an estimation of the daily fraction of solid precipitation mainly based on the manual observation net-

work ("réseau nivo-météorologique").

200

Meteorological variables for each elevation of each massif are analysed using a maximum number of :

– 12 observations for temperature and wind,

– 8 observations for humidity,

– 16 observations for precipitations, per massif.

Some final adjustments are made at the end of the analysis, to ensure the physical consistency, such as an adjustment of the205

elevation of rain/snow limit with respect to temperature.

2.5 Short description of Crocus

The SURFEX/ISBA-Crocus (hereafter Crocus) model represents the snowpack as a stratified medium depicted by a dynamical

number of numerical layers up to 50. The prognostic variables for each layer are snow mass, density, enthalpy (i.e. temperature

and liquid water content), age, and complementary variables for snow microstructure (specific surface area and sphericity).210

Evolution equations rely on the solving of the diffusion heat equation in this stratified medium with Neumann boundary con-

dition. Phase changes (melting and refreezing) are computed assuming a decoupling with heat diffusion at the model internal

time step (900 seconds). Empirical parametrisations are implemented to compute the surface energy fluxes (parametrisations of

albedo for solar radiation absorption and parametrisations of sensible and latent heat turbulent fluxes). Other parametrisations

allow simulating the main other physical processes: metamorphism, compaction and liquid water percolation. The model was215

initially developed and described by Brun et al. (1989, 1992). The most up-to-date description of the model was published by

Vionnet et al. (2012). A multiphysical version was developed by Lafaysse et al. (2017) to quantify uncertainties associated with

the empirical parametrisations. The physical options of Crocus used in the S2M dataset correspond to the default configuration

as defined in Lafaysse et al. (2017) except for turbulent fluxes (RI2 option).

220

2.6 Short description of MEPRA

MEPRA is an expert model designed to estimate the avalanche hazard from the snowpack stratigraphy simulated by Crocus,

from mechanical diagnosis and expert rules (Giraud et al., 2002). It has been fully implemented in the SURFEX platform,

and its outputs are computed and made available with the other diagnostic variables. The general concept in MEPRA is to

compare the shear strength to the shear stress in each snow layer. The shear strength is parametrised as a function of density225

and microstructure variables. For natural release, only the weight of overlying layers is taken into account in the shear stress.

An additional load is added in order to compute accidental triggering. Expert rules are defined to compute a hazard index

10
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Variable Name Unit Height

Surface pressure PSurf Pa surface

Surface temperature Tair K 1.5 m

Wind speed Wind ms−1 5 m

Wind direction Wind_DIR degrees from N 5 m

Specific humidity Qair kg kg−1 1.5 m

Relative humidity HUMREL % 1.5 m

Rainfall rate over the last hour Rainf kg m−2 s−1 surface

Snowfall rate over the last hour Snowf kg m−2 s−1 surface

Surface incident long-wave radiation LWdown W m−2 surface

Direct short wave radiation DIR_SWdown W m−2 surface

Diffuse short-wave radiation SCA_SWdown W m−2 surface

Cloudiness NEB cloud area fraction between 0 and 1

0◦C isotherm elevation isoZeroAltitude m

Rain-snow limit altitude rainSnowLimit m

Table 2. List of SAFRAN output variables, at an hourly time step

from these mechanical stability indicators, both for natural release and accidental triggering. The system is only applied on 40

degrees slopes, at a internal time step of 3 hours.

230

3 Description of the S2M dataset

3.1 S2M dataset description

The S2M reanalysis spans the time period from 1st August 1958 at 6:00 until 1st August 2020 at 6:00. The atmospheric

(FORCING.nc) and snow cover (PRO.nc) datasets are each stored in 62 annual NetCDF files for each mountainous area

(French Alps, Pyrenees and Corsica). Two kinds of simulation are available: one on flat terrain only, and one taking slopes into235

account by projecting the radiative parameters according to the slope value and its aspect.

3.1.1 Meteorological variables

Meteorological fields are provided at an hourly time step. The list of SAFRAN output variables is summarised in Table 2. The

0◦C isotherm elevation and the rain snow limit are are computed using the whole vertical profile simulated by SAFRAN for

each massif.240
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3.1.2 Snow cover and soil variables

Files containing snow cover and soil variables include data at a daily time resolution (with state variables provided at 6:00). The

list of the output snow cover and soil diagnostics is given in Table 3. Note that some diagnostics have a high diurnal variability

(surface temperature, stability indices,...). A higher temporal resolution may be provided in a future version of this dataset if

we receive expressions of interest. The detailed vertical profiles of the prognostic variables of the snowpack are not provided245

because it would represent a too big data volume at this spatial extent. Table 4 provides a list of the variables relevant to the

surface energy balance (with or without snow on the ground). Mechanical variables computed by the MEPRA model are given

in table 6 and provide estimates of the stability of the snowpack.

Variable Name Unit Height

Total snow depth DSN_T_ISBA m

Surface temperature TS_ISBA K surface

Total snow reservoir (Snow Water Equivalent, SWE) WSN_T_ISBA kg m−2

1 day new snow thickness SD_1DY_ISBA m

3 days new snow thickness SD_3DY_ISBA m

5 days new snow thickness SD_5DY_ISBA m

7 days new snow thickness SD_7DY_ISBA m

1 day new SWE SWE_1DY_ISBA kg m−2

3 days new SWE SWE_3DY_ISBA kg m−2

5 days new SWE SWE_5DY_ISBA kg m−2

7 days new SWE SWE_7DY_ISBA kg m−2

Penetration depth of ram resistance sensor <2daN RAMSOND_ISBA m

Wet snow thickness WET_TH_ISBA m surface

Refrozen snow thickness REFRZTH_ISBA m surface
Table 3. List of instantaneous snowpack variables (at 6:00) included in the S2M reanalysis250
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Variables Name Unit

Net radiation over tile nature RN_ISBA W m−2

Ground flux over tile nature GFLUX_ISBA W m−2

Surface albedo TALB_ISBA -

Downward long-wave radiation LWD_ISBA W m−2

Upward long-wave radiation LWU_ISBA W m−2

Downward short-wave radiation SWD_ISBA W m−2

Upward short wave radiation SWU_ISBA W m−2

Upward sensible heat flux H_ISBA W m−2

Upward latent heat flux LE_ISBA W m−2

Evaporation flux EVAP_ISBA W m−2

Snow melting rate SNOMLT_ISBA kg m−2 s−1

Cumulative rainfall flux RAINF_ISBA kg m−2 s−1

Table 4. List of variables integrated over the past 24 hours at 6:00

Variable Name Unit Depth

Soil temperature TG1 and TG4 K 0.5 cm and 8 cm

Liquid water content WG1 m3 m−3 0.5 cm

Solid water content WGI1 m3 m−3 0.5 cm
Table 5. List of soil parameters simulated by SURFEX

Variable Name Unit

Depth of high instability layer DEP_HIG m

Depth of moderate instability layer DEP_MOD m

Accidental risk index ACC_LEV -

Natural risk index NAT_LEV -

Type of avalanche AVA_TYP -
Table 6. List of snowpack stability indices simulated by MEPRA

4 Results255

4.1 Meteorological and snow cover climatology and inter-annual variability from the S2M reanalysis

The S2M reanalysis provides a comprehensive appraisal of the climatology and inter-annual variability of meteorological

and snow cover conditions in the French Alps, Pyrenees and Corsica. Here we introduce examples on how the data can be
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exploited, enabling exploration of the dataset across its three main dimensions (time, horizontal dimension - massif - and

elevations), using the French Alps as an example and focussing on the four indicators as follows:260

– air temperature at 2 m (seasonal and annual mean values)

– total precipitation (seasonal and annual cumulative values)

– fraction of solid precipitation (seasonal and Nov-Apr mean values)

– mean snow depth (seasonal and Nov-Apr mean values)

Figure 5 shows annual values, aggregated over all the massifs of the French Alps of these four indicators for three different265

elevations. The envelops represent the variability between the different massifs of the Alps. The amplitude of variations of the

annual mean temperature (Figure 5a) at a given elevation is lower than 2◦C with low variability between the different massifs

(shaded areas around the lines). The variation of the mean fraction of solid precipitation in winter (Figure 5c) is much larger

with an amplitude of about 20 % (except at high elevation where the temperature is low enough to have almost only solid

precipitations). Annual precipitations (Figure 5b) vary a lot with an inter-massif variability for a given year reaching about270

30 % of the mean, consistent with large variations of the mean snow depth in winter (Figure 5d) from one year to the other as

well as between the different massifs.

As shown in Figure 5, averaging the simulated values over the whole Alps hides a strong spatial variability between the

massifs. Figure 6 shows that the mean simulated snow depth in winter at 1800 m a.s.l. over the period 1961-1990 ranges from

about 10 cm on the least snowy massif of the Southern Alps up to about 1 m for some of the northern massifs of the Alps. The275

temporal variability of the S2M snow depth can also be visualised with a time series of miniature maps : Figure 7 shows the

yearly anomalies of the average snow depth in winter at 1800 m a.s.l. against the reference 1961-1990 (shown in Figure 6).

This visualisation highlights the strong inter-annual variability of the winter snow cover, with fluctuations that can be greater

than 100% of the mean value over the reference period. It also points the spatial variability for one given year with anomalies

that can be positive for some massifs and negative for other massifs.280

Figure 8 explores the vertical dimension of the dataset, as well as the simulated trends for the different seasons of the year. It

compares the mean of the different variables over the Alps for each season at different elevations over the periods 1960-1990

and 1990-2020 (left), as well as the difference between the two periods (right). Only elevations between 900 m a.s.l and 3000 m

a.s.l are considered because the lack of input observations outside this range of elevations (see Figure 4) reduces the quality of285

the reanalysis.

In terms of mean temperature over the Alps, Figure 8 (a, b) shows different patterns depending on the season :

– In spring and summer the S2M reanalysis presents a positive trend of +0.2◦C per decade at low elevations up to +0.4◦C

per decade around 2100 m a.s.l.290

14

https://doi.org/10.5194/essd-2021-249

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 6 September 2021
c© Author(s) 2021. CC BY 4.0 License.



2.5

0.0

2.5

5.0

7.5

10.0

12.5

Ai
r t

em
pe

ra
tu

re
 a

t 2
m

 (°
C)

a) Annual mean

2700m (21 massifs)
1800m (24 massifs)
900m (24 massifs)

0

1000

2000

3000

To
ta

l p
re

cip
ita

tio
n 

(k
g 

m
2 )

b) Annual mean

2700m (21 massifs)
1800m (24 massifs)
900m (24 massifs)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 so

lid
 p

re
cip

ita
tio

n c) Nov-Apr mean

2700m (21 massifs)
1800m (24 massifs)
900m (24 massifs)

1960 1970 1980 1990 2000 2010 2020
Year

0

1

2

3

Sn
ow

 d
ep

th
 (m

)

d) Nov-Apr mean

2700m (21 massifs)
1800m (24 massifs)
900m (24 massifs)

Figure 5. Evolution of the annual mean air temperature at 2 m (a), total precipitation (b) and winter (November to April) mean of the fraction

of solid precipitation (c) and total snow depth (d) aggregated over all the massifs of the French Alps at different elevations. The shadings

represents the variability between the massifs.

– In fall and winter the simulation has a slight negative trend of about -0.1◦C per decade.

Beaumet et al. (2021) compared the temperature trends of the S2M reanalysis to that of the ones simulated by a model run of

the MAR regional climate model driven by the ERA-20C reanalysis and SPAZM reanalysis (Gottardi et al., 2012) and showed

that the S2M reanalysis simulates smaller trends both in winter and at high and low elevations in summer. Further analysis of295

these simulated trends and a comparison to observations is presented on section 4.2.3.

Concerning precipitations, Figures 8 (c, d) shows that the mean of total precipitation in S2M over the Alps in the last three

decades is higher in summer (rise of about 3%) and fall (rise of about 10%) and lower in winter and spring (drop of about 3%)

than in the three previous decades at all elevations. But the fraction of solid precipitation (Figure8, e and f) decreases in all

elevations and seasons, except at high elevations in summer where the total precipitation increases and the temperature is low300

enough to have frequent snowfalls in summer. Theses trends are consistent with a general decrease of the average total snow

depth over the Alps at all elevations and for all seasons between the two considered periods (Figure 8, g and h).
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Figure 6. Mean snow depth in winter (from November to April) at 1800 m a.s.l. for the different massifs of the French Alps over the period

1961-1990.

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Relative deviation
from mean 1961−1990 (%)

−100 to −80
−80 to −60
−60 to −40
−40 to −20
−20 to −10
−10 to 10
10 to 20
20 to 40
40 to 60
60 to 80
80 to 100
100 to 150
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Figure 7. Mean deviation of natural snow depth (in meters) from the mean snow depth of the period 1961-1990 in winter (from November

to April) at 1800 m a.s.l.
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Figure 8. Trends of mean simulated temperature (a, b), total precipitations (c, d), fraction of solid precipitation (e, f) and snow depth (g, h)

for the different elevations and seasons between the periods 1960-1990 and 1990-2020 over the Alps. The envelops represents the variability

between the massifs. Vertical bars on the right column indicate the 300 m elevation range that is covered by the corresponding dots.
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4.2 Evaluation of simulated temperatures and precipitation

4.2.1 Data and Methods305

Among the local simulations described in section 2.1, a specific evaluation of the simulated air temperature and precipitation

was made using homogenised series of monthly observations across the French Alps (mostly located at mid elevations) be-

tween 1960 and 2012. These series provide observations of monthly mean of daily maximum (14 stations) and minimum (9

stations) temperatures as well as monthly precipitation (43 stations) and have been homogenised using the HOMER software

(Mestre et al., 2013). However it is important to consider that the corresponding raw daily observations are assimilated in the310

S2M reanalysis described in this paper and therefore do not constitute an independent evaluation dataset. Consequently, an-

other reanalysis was performed after removing these observations from the assimilation process for an independent evaluation.

A third reanalysis was made without the assimilation of any temperature observation to identify the impact of the assimilation

of these observations on the simulation performance.

315

For the evaluation of temperature simulations, it is necessary to take into account the bias due to the hourly resolution of

SAFRAN simulations whereas the observed minimum and maximum temperatures often stands in-between two hourly tem-

peratures. These biases can be estimated by comparing observation series of hourly temperatures and hourly minimum and

maximum temperatures using the raw hourly observations of the evaluation sites (available since the mid 1990s until August

1st 2020). These data show that the minimum value of hourly temperatures is on average about 0.2◦C higher than the absolute320

daily minimum and the maximum value of hourly temperatures is on average about 0.4◦C lower than the absolute daily maxi-

mum. The 0.2◦C gap between the minimum and maximum temperatures shifts highlights that the daily temperature evolution is

not a perfect sinusoid and presents a day/night asymmetry (Martin and Mainguy, 1988) : a typical daily temperature evolution

curve for a clear sky day exhibits a narrow maximum and flat minimum. Thus, the skill of the mean simulated temperature can

not be strictly assessed from the skill of the average of minimum and maximum temperatures. The available evaluation dataset325

does not allow to provide an equivalent evaluation of hourly temperatures or even daily mean temperatures. Thus the temper-

ature evaluation consists of direct comparison between (hourly) simulated and (absolute) observed minimum and maximum

temperatures. This implies that a simulation perfectly matching the corresponding observations is expected to display a mean

deviation of +0.2◦C on minimum temperature and a mean deviation of -0.4◦C on maximum temperature.

330

For the two climatological periods and the three simulations, the mean deviation and the root mean square deviation (RMSD)

between monthly simulated and observed values were computed without taking into account the season of the year.

Evaluation data were also used in section 4.2.3 to assess and discuss the relevance of simulated trends of temperature and

precipitation in winter and summer presented in section 4.1 and based on the evaluation informations of section 4.2.2.335
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(d) Mean deviation of minimum temperature
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Figure 9. Root mean square deviation (left) and mean deviation (right) between the simulated monthly mean of maximum (top) and minimum

(bottom) daily temperatures and the corresponding homogenised series over the periods 1960-1990 and 1990-2012 for three different version

of the S2M reanalysis (see section 4.2.1).

4.2.2 Evaluation of minimum and maximum temperatures and precipitation

The box plots in Figure 9 show the variability of the scores among the different sites within each elevation range and the

notches indicate the confidence interval of the median obtained by a bootstrap sampling of the considered stations.

Figure 9 (a and b) presents the RMSD between the simulated and observed minimum and maximum temperatures. For both

variables, the RMSD significantly decreases in the later period when more observations are assimilated (red and blue boxplots)340

and remains constant or even increases when no observations are assimilated (grey boxplots). Similarly, the absolute values of
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Figure 10. Root mean square deviation (left) and mean deviation (right) between the simulated monthly cumulated precipitation and the

corresponding homogenized series form the periods 1960-1990 and 1990-2012 for three different version of the S2M reanalysis (see section

4.2.1).

the mean deviation between the maximum and minimum of hourly simulated temperatures and the observed daily maximum

and minimum temperatures (Figure 9, c and d) both decrease over time only for simulations with temperature observations as-

similation. These figures clearly show that the assimilation of temperature observations have a major impact on the simulation

quality and that the increasing number of these observations over time results in an improvement of the simulation.345

The magnitude of the mean deviation evolution in Figure 9 also provides important informations. The mean deviation of the

minimum temperature drops between the two periods by about 1.4◦C from around 1.6◦C to around 0.2◦C on average. This

0.2◦C residual deviation is expected as it is close to the mean deviation between observed minimum of hourly temperatures

and the daily minimum (see section 4.2.1). On the contrary, the mean deviation of the maximum temperature rises by roughly350

0.3◦C (reference reanalysis) and 0.8◦C (independent simulation) on average between the two periods. In this case, a residual

bias of about 0.8◦C for the reference reanalysis and of about 0.4◦C for the independent simulation in the later period remains

unexplained compared to the 0.4◦C observed difference between hourly maximum and absolute maximum temperatures (see

section 4.2.1). The main factor of this clear improvement of minimum and maximum temperature simulation is the dramatic

increased number of assimilated air temperature observations since the beginning of the 1990s (see Figure 3). This temporal355

heterogeneity is even more significant since an important part of these new observations are hourly observations. These hourly

observations are crucial to accurately simulate the diurnal cycle of temperature. Thus the assimilation of more observations

over time tends to improve the simulation of the daily variations of air temperature and to bring it closer to observations for

both maximum and minimum temperatures. However, the reduction over time of the warm bias in minimum temperature is

stronger than the reduction over time of the cold bias in maximum temperatures.360
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Figure 11. Difference of the mean simulated daily minimum (a) and maximum (b) air temperature and total precipitations (c) for different

elevations in summer and winter between the climatological periods 1990-2020 and 1960-1990 (solid line) and 1990-2012 and 1960-1990

(dotted line) over the Alps. Crosses represent the corresponding observed difference on a set of homogenized observation series between the

periods 1960-1990 and 1990-2012.

The evaluation of precipitation exhibits no strong systematic bias for any simulation or period (Figure 10, b), but a stronger

dispersion of the mean deviation for the independent simulation. This is confirmed by the fact that the RMSD (Figure 10,

a) is by far higher for the independent simulation than for the two other simulations despite an improvement over time. As

expected, removing all temperature observations from the assimilation process does not affect much the precipitation analysis

(only minor effects but a major impact exists on the precipitation phase) but removing few precipitation observations (blue365

boxplots) has a stronger negative impact due to the small number of available precipitation observations (see Figure 3).
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4.2.3 Trends of minimum and maximum temperatures and precipitation

Figure 11 compares the simulated and observed trends of minimum (a) and maximum (b) air temperatures and precipitation

(c) at different elevations in winter and summer. Since the series of observation only cover the period from 1960 to 2012, two370

different periods are considered for the most recent years (1990-2012 and 1990-2020) for direct comparison.

Figure 11 (a) shows that the order of magnitude of the simulated trends of minimum air temperature is underestimated

by about 0.4◦C both in summer and winter, with negative simulated trends instead of positive observed ones. This can be

linked with the result of section 4.2.2 that points out that the improvement of the simulation of minimum temperature over

time generates an artificial cooling of about 1.4◦C. On the contrary, Figure 11 (b) shows that simulated trends of maximum375

air temperature fit the observed ones much better, especially at low elevations, despite the artificial warming of about 0.3◦C

highlighted in section 4.2.2.

The magnitude of this warm bias on maximum temperature only partially balances the cold bias on minimum temperature,

resulting in an artificial cooling of the simulation relatively to observations in terms of mean air temperature. This pattern is

even more pronounced when considering only the winter season (see Figure 15 of Appendix A), which explains the negative380

temperature trend simulated in winter as noticed in section 4.1.

The dispersion of the observed trends of precipitation in Figure 11 (c) indicates a high spatial variability of these trends. The

fact that the simulated trend of the mean precipitation over the Alps stands in the middle of the scatter plot suggests a good

agreement between simulated and observed trends of precipitation both in summer (no simulated trend) and winter (slightly

negative simulated trend).385

4.3 Evaluation using snow depth observations

The S2M reanalysis 1958-2020 has been evaluated over the period 1983-2020 by comparing simulated snow depth values

to independent observations from the 665 observation sites introduced in section 2.1. The use of total snow depth for the

evaluation of the performance of the simulation is motivated by the fact that the analysis system does not use any snow cover

observation. In addition, snow cover simulations in the S2M reanalysis depend on both the meteorological analysis and the390

snow cover model. Snow depth is thus an integrated indicator of the overall performance of the full model chain. Last, it is

the only variable that is widely available with comparatively low observation errors. The main limitations are its low spatial

representativeness, due to the large spatial variability of snow depth at all scales and the temporal coverage of the available

observations. Using a large number of snow depth observations partly mitigates the effect of the spatial variability and the

evaluation focuses on the last four decades of the reanalysis since very few snow depth observations are available before 1983.395

We computed two scores for each observation station : mean deviation and RMSD, by taking into account data from October

1st to June 30th of each year.

Figure 12 provides an overview of the ability of the system to simulate snow depth values, with respect to observations,

depending on the elevation. This figure compares the simulated and observed snow depth values on the 665 evaluation sites,

grouped by elevation range. Figure 12 shows no strong systematic deviation, with a confidence interval of the median deviation400
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Figure 12. Mean deviation, root mean square deviation between the simulated and observed snow depths values and mean simulated snow

depth on the 665 validation sites grouped by elevation range.
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always covering both positive and negative values which means that the number of sites with a positive deviation is not

significantly different from the number of sites with a negative deviation. The confidence interval is larger at higher elevations

due to the lower number of evaluation sites. The sign of the biases is not systematic although slight negative biases tend to

prevail above 1600 m a.s.l. RMSD medians increase with elevation from less than 10 cm to around 40 cm in a consistent way

with the increase of the mean snow depth but with a different rate. The ratio between RMSD and the mean snow depth is higher405

at low elevations (almost 100% at elevations below 1200 m a.s.l) and tends to decrease with elevation.

Figures 13 (a) and 13 (b) show the spatial variability of the simulation performance by grouping evaluation sites by French

administrative departments (NUTS-3 administrative level in Europe, see Figure 2) in order to have a sufficient number of

observations for each unit. There are typically two to six massifs per department.

Figure 13 (a) shows no systematic bias for most departments even if snow depth simulations seems to be slightly overesti-410

mated in the northern and central Alps and underestimated in the southern Alps and central and eastern Pyrenees as well as in

Corsica. Figure 13 (b) shows that the mean RMSD stands between 15 cm and 30 cm for all departments of the Alps and central

and Pyrenees. RMSD is lower in Corsica, with a larger dispersion of the confidence interval of the mean due to the lower num-

ber of evaluation sites. Comparing these RMSD to the mean simulated snow depth (Figure 13, c) shows that despite generally

higher snow depth values in the Alps, the corresponding simulation errors are not significantly higher over the departments of415

the Alps than on other departments, indicating a better performance of the simulation chain. This can partly be explained by

the fact that there are more available meteorological observations for the SAFRAN analysis in the French Alps than in other

massifs (see Figure 3). The evaluation on Corsica does not give much information since the lower number of evaluation sites

leads to a huge dispersion of the confidence interval of the RMSD combined to low mean simulated snow depths.

This evaluation shows that the S2M reanalysis is able to simulate a variable that is not assimilated and cumulates errors from420

both the meteorological analysis and the snow cover model with no systematic bias and moderate deviations to observations.

Another evaluation of the performance of the simulation over time is presented in Figure 14. It compares the mean deviation

(a) and RMSD (b) between snow depth simulations of the S2M reanalysis and the simulation with no temperature observations

assimilation to their corresponding observations for the last four decades. While the reference S2M reanalysis shows no system-425

atic bias for the four decades, removing temperature observations from the SAFRAN analysis introduces a constant negative

bias of around 10 cm on average. In addition, the RMSD for the reference reanalysis is always lower by a few centimetres than

the simulation with no temperature observation (see Figure 14) despite a mean simulated snow depth systematically higher by

about 20%. For both simulations, the RMSD tends to decreases over time except for the last decade where the mean simulated

snow depth is significantly higher. This consolidates the results of section 4.2.2, confirming that the reanalysis described in this430

paper provides an optimal simulation at all time by considering all available information at that time. The downside of this is

that the simulated trends are not fully representative of the climatological trends due to the temporal heterogeneity of available

observations.
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(a) Mean snow depth deviation
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Figure 13. Mean deviation and root mean square deviation between the simulated and observed snow depths values and mean simulated

snow depth on the 665 evaluation sites grouped by administrative departments. Department numbers 73 and 74 correspond to the Northern

Alps, 38, 26 and 05 to central Alps, 04 and 06 to Southern Alps, 64 and 65 cover Western Pyrenees, 31 and 09 central Pyrenees, 66 and 99

Eastern Pyrenees, and 20 Corsica)
25

https://doi.org/10.5194/essd-2021-249

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 6 September 2021
c© Author(s) 2021. CC BY 4.0 License.



(a) Mean snow depth deviation
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Figure 14. Mean deviation (a) and root mean square deviation (b) between the simulated and observed snow depth values and mean simulated

snow depth (c) for the the four decades between 1980 and 2020 for the S2M reanalysis and the simulation with no temperature observation

assimilated (see section 4.2.1). 26

https://doi.org/10.5194/essd-2021-249

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 6 September 2021
c© Author(s) 2021. CC BY 4.0 License.



5 Discussion435

In this study, we introduce the open access S2M reanalysis, which provides meteorological and snow cover data for the French

Alps, Pyrenees and Corsica for the time period 1958-2020. This dataset enables a large number of research and operational

applications, but several limitations need to be considered. Here we review the main strengths and weaknesses of this dataset,

and their consequences.

5.1 Main assets and known uses440

The S2M reanalysis makes it possible to take into account meteorological and snow cover conditions for any time between

1958 and 2020 in the French high elevation mountain regions. It supersedes the SCM reanalysis, which has been developed by

Durand et al. (2009a) in the early 2000s. SCM and then S2M have been used to address a wide range of applications in various

scientific domains. The S2M dataset was used as a reference for evaluating snow cover simulations driven by the NWP model

AROME (Queno et al., 2016; Vionnet et al., 2019). SCM and S2M reanalyses have been used in a number of studies addressing445

glacier mass balance in the French Alps (Gerbaux et al., 2005; Réveillet et al., 2018; Bolibar et al., 2020; Peyaud et al.,

2020) or hydrological simulation of alpine mountainous catchments (Lafaysse et al., 2011). Pellarin et al. (2016) used S2M

soil thermal state and the overlying snow cover to investigate the potential of L-band satellite measurements to improve soil

moisture retrievals. Although climate trends may be questionable, the S2M dataset provides a robust climatological baseline

for mountain regions. It has been used as a reference for adjusting climate change projections with statistical downscaling450

techniques (Lafaysse et al., 2014; Verfaillie et al., 2017). This methods leads to the provision of meteorological forcing driving

files corresponding to future climate time series, on the same geometry and data format as S2M reanalysis forcing files, enabling

homogeneous post-processing including running SURFEX/ISBA-Crocus for natural (Verfaillie et al., 2018) and managed

(Spandre et al., 2019) snow in ski resorts. There are increasing examples where S2M provides relevant data to investigate

the links between vegetation, meteorological and snow conditions (Francon et al., 2020) or extreme events (Corona-Lozada455

et al., 2019). S2M is also involved in various snow cover process studies (Vionnet et al., 2013; Tuzet et al., 2020) and a

foundation for innovative developments towards the assimilation of remotely sensed and in situ snow cover observations in the

simulations (Viallon-Galinier et al., 2020; Deschamps-Berger et al., 2020; Cluzet et al., 2021).

5.2 Temporal heterogeneity

A number of studies rely on S2M for the analysis of meteorological and snow cover trends at climatic scale (Spandre et al.,460

2019; Lopez-Moreno et al., 2020). For these applications, the main caveat in using S2M lies in the temporal heterogeneity of the

dataset, in particular the strong changes in temperature observations across the mountain regions considered during the full time

period of the reanalysis. The S2M reanalysis for the period 1991-2020 is produced using significantly more observations than

the simulation over the period 1961-1990 (Figure 3) and we established in section 4.2.3 that this has a significant impact on the

simulated temperature trends. This is superimposed on changes in meteorological guess in 2002 (from ERA-40 to ARPEGE)465

and changes intrinsic to ERA-40 and ARPEGE: assimilation of satellite observations in ERA-40 is known to be responsible
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for temporal breaks (Sturaro, 2003; Sterl, 2004). Over the time period from 2002 to 2020, the ARPEGE analysis was even

more affected by various changes in its physical parametrisation as well as its changes of horizontal resolution over time.

Similarly to many other reanalysis systems, the original purpose of the S2M reanalysis was not to provide a system dedicated

to the analysis of climate trends, but rather the best available estimate of meteorological and snow cover conditions for every470

day within the covered time period, hence heterogeneity was allowed in the input data to the S2M reanalysis. This choice is

corroborated by the various temporal scores presented in this study showing a clear improvement of the simulation over time

correlated to the growing number of available observations. The downside of this temporal refinement is the introduction of

artificial biases in various simulated variables that can either compensate or amplify actual climatological trends as presented

in this study for temperature in winter. Thus, trend analysis using S2M must be considered with high caution, especially for air475

temperature, but also probably for other sensitive variables such as snow depth (see Figure 4 of Verfaillie et al. (2018) at Col

de Porte) although very few observations series allow an accurate characterisation of long term trends.

5.3 Future updates

The S2M dataset is intended to be updated every year to extend its time coverage period and take into account evolutions of

the various components of the model chain. This may impact, in the future, the simulations presented in this article. Replacing480

ERA-40/ARPEGE by ERA-5 is under preparation and is expected to reduce temporal heterogeneities - although changes in

observation data are likely to remain the dominant source of heterogeneity. It is also planned to expand the S2M reanalysis to

lower-lying mountain ranges Vosges, Jura and Massif Central.

6 Conclusions

This study introduces and describes the latest release of the meteorological and snow cover reanalysis S2M covering the 62 year485

period from 1958 to 2020 for the French mountainous areas (French Alps, Pyrenees and Corsica). It includes the description of

the different models and data used to produce this dataset, a comprehensive list of the parameters forming the dataset itself in its

specific geometry and the technical access to the database. An evaluation of the simulation quality is provided by comparison

to in-situ observations of snow depth as well as an overview of known and potential uses of this dataset, and a series of caveats

associated with the use of this dataset. Yearly updates of this reanalysis will extend the period in the future and could lead to490

significant updates of the current S2M data by including model or input data modifications.
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7 Data access

The S2M dataset is freely available on the AERIS data center on the following https://doi.org/10.25326/37. It is required that

scientific publications using the S2M dataset mention in the acknowledgements: "The S2M data are provided by Météo-France

- CNRS, CNRM, Centre d’Études de la Neige, through AERIS" and cite this article as reference and refer to the dataset as500

Vernay et al. (2020).
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(a) RMSD of maximum temperature in winter
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(b) RMSD of minimum temperature in winter
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(c) Mean deviation of maximum temperature in winter
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(d) Mean deviation of minimum temperature in winter
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Figure 15. Same as Figure 9, but for winter (DJF) temperatures only.
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(a) RMSD of maximum temperature in summer
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(b) RMSD of minimum temperature in summer
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(c) Mean deviation of maximum temperature in summer
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(d) Mean deviation of minimum temperature in summer
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Figure 16. Same as Figure 9, but for summer (JJA) temperatures only.
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